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Abstract

In this paper, a high accuracy and rapid convergence hybrid approach is developed for the Quadrature Element
Method (QEM) solution of two-dimensional plane stress and plate bending problems. The hybrid QEM essentially

consists of a collocation method in conjunction with a Galerkin ®nite element technique to combine the high
accuracy of the Di�erential Quadrature Method (DQM) with the generality of ®nite element formulations. This
results in superior accuracy with fewer degrees of freedom than conventional FEM or FDM. The present method

also extends the general application of the collocation numerical approach to fourth-order governing equation
systems. Here, the in¯uence of collocation point location is investigated. A series of numerical tests is conducted in
order to assess the performance of the quadrature plane stress and plate elements in static problems. # 1999
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1. Introduction

Finite element (FEM) and ®nite di�erence (FDM) methods have been employed in the past for the
solution of a wide variety of problems in the ®eld of engineering. However, both FEM and FDM
typically use low-order approximating schemes, and, consequently, high accuracy is achieved only with
di�culties. In recent years, in the newly emerging branch of numerical metrology, spectral and
pseudospectral collocation methods have drawn special attention in the areas of ¯uid dynamics and heat
transfer. The major advantage of this class of methods is the high accuracy attained by the resulting
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discretization for much fewer nodes, or the savings in computational e�ort for a given accuracy. One
may refer to the book by Canuto et al. (1987) for a general review.

Amongst the spectral and pseudospectral methods, the Legendre and Chebyshev pseudospectral
methods are commonly used for the solution of non-perodic di�erential equations. However, the
Legendre and Chebyshev collocation points lie unevenly spaced in the de®ned interval [ÿ1,1], leading to
some inconvenience in application. Another numerical technique, the di�erential quadrature method
(DQM) which was introduced by Bellman and Casti (1971) seems to possess the major advantages of
the spectral method (SM) but uses even spacing. Subsequently, the DQM will provide for an easier
transformation between the physical and the computational domains. More detailed discussions and
review articles have appeared in recent years, e.g., Quan and Chang (1989), Bernardi and Maday (1991).

Di�culties in applying the collocation method to practical engineering problems arise whenever the
geometry to be considered departs from a simple rectangle and when high resolution boundary
conditions are needed. Here, the limitations caused by using global basis functions become an
unfavorable feature. Also, if there are discontinuities in the computational domain, then globally
continuous interpolation functions are not suitable for an approximation of the physical model. As an
improvement, many domain decomposition techniques have been proposed. Amongst these methods,
Patera (1984) used a variational formulation which combines the generality of the FEM and the
accuracy of the spectral method (SM). He named this the spectral element method (SEM) which is one
of the commonly used methods.

The di�erential quadrature method (DQM) has been applied to the analysis of various single
structural components such as bars, beams, membranes, and plates by Striz et al. (1988), Bert et al.
(1989), and Wang et al. (1993). In some cases, the SM and the DQM or the SEM and QEM are
identical. For instance, when applying these two classes of methods to second-order governing
equations, the only major di�erence would be the grid spacing. However, most of the problems
encountered in the ®eld of solid mechanics are high-order systems with more than one kind of boundary
condition at each edge. To apply boundary conditions in fourth-order systems, a boundary
approximation approach was developed by Jang et al. (1989), the d-type grid arrangement. This kind of
approximation is quite e�cient for clamped boundaries, that is, if both the Dirichlet and Neumann
boundary conditions are zero. For other kinds of boundary conditions, however, one will ®nd that the
required increased programming e�orts in¯ict losses on the simplicity and e�ciency of the DQ scheme
when compared with the second-order systems. Most of all, the accuracy of the approximating solution
is di�cult to determine. The reason is that, for arbitrarily distributed grid points, quadrature is usually
obtained by inverting an ill-conditioned Vandermonde matrix where the numerical inversion procedure
becomes unstable for large numbers of grid points due to limited digits used in computers.
Consequently, the accuracy of the solution deteriorates as the number of grid points increases. Also,
another disadvantage to the d-type grid arrangement is that it is not suitable for the development of
domain decomposition techniques. Even if the node number in a subdomain is not too large, when one
assembles the sti�ness matrix, one will ®nd that the orders of the weighting coe�cients for interelement
nodal points and for interior nodal points are quite di�erent. Thus, in the procedures for inverting such
sti�ness matrices, truncation errors will cause inaccuracies. This means that an increase in nodal points
will not necessarily guarantee a good solution for multi-domain problems. With the improvements to
the high-order DQM shown by Chen et al. (1997), and applied by Striz et al. (1997) to the free vibration
of plates, domain decomposition techniques become easier for fourth-order systems. Deciding the DQ
weighting coe�cients for such a system analytically could be cumbersome compared with second-order
systems, although it seems possible. For convenience, it is advantageous to calculate the weighting
coe�cients for fourth-order systems numerically. One will then ®nd that the improved scheme tends to
converge for a mesh of up to 15 � 15 nodes for a two dimensional system which could not exceed
11 � 11 nodes in the previous scheme. Of course, if the number of nodal points for a single domain is
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large, such as 30 � 30, analytical calculation of the weighting coe�cients is necessary in order to
minimize numerical errors caused by inverting ill-conditioned matrices. This is beyond the scope of the
present study. For moderately large node numbers (less than 15 � 15), numerically deciding the
weighting coe�cients seems reasonable. Finally, the sti�ness matrices need to be inverted numerically
when solving for the ®eld variables.

In the following plane stress problem, we will present a numerical technique which is an extension of
the spectral element method. Finally, for plate bending problems, a numerical technique combining a
variational formulation and a fourth-order collocation approach to the solution of fourth-order
governing equations will be introduced.

2. Comparisons of QEM with other high accuracy schemes

2.1. Formulation for single boundary condition at domain ends

To illustrate the hybrid method used in the QEM and to compare it with other approximate high-
order numerical methods mentioned in the previous section, we shall investigate the convergence of a
simple one-dimensional ODE with known exact solution which will be convenient for direct comparison.
Consider the solution of

d 2f
dx2
� f� x � 0, 0RxR1, f�0� � f�1� � 0: �1�

The functional I corresponding to Eq. (1) is given by

I � 1

2

�1
0

"
ÿ
�

df
dx

�2

�f2 � 2fx

#
dx: �2�

For the spatial discretization by the QEM, the global coordinate x de®ned in the interval [a,b ] can be
transformed to the local coordinate system �x , which is de®ned on the interval [ÿ1,1], such that:

�x � 2

�bÿ a� �xÿ a� ÿ 1: �3�

Let the e-th element be de®ned in the interval [a,b ] in the global coordinate system. The series
expansion for the function f� �x � in the e-th element can be written as

f� �x�1fe
n� �x� �

Xn
k�0

Nk� �x �fe
k � bNcffeg: �4�

Here, Nk� �x � are the basis functions which are locally continuous over the e-th elemental domain [a,b ],
and fe

k are the coe�cients. The superscript e denotes the e-th element. The interpolating basis functions
Nk� �x � can be calculated as follows:

bNc � b �xcbv0cÿT, �5�
where

b �xc � b1 �x . . . �xnc �6�
and [v0] is the Vandermonde matrix,
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�v0� �

266664
1 1 . . . 1
�x0 �x1 . . . �xn

..

. ..
. ..

. ..
.

�xn
0 �xn

1 . . . �xn
n

377775: �7�

Using the necessary conditions to make I stationary,

@I

@fi

�
XE
e�1

@I e

@fi

� 0, �8�

one can construct the equation

XE
e�1
�K e�ffeg �

XE
e�1
fPeg, �9�

where

�K e� �
�b
a

(
ÿ
�

dN

dx

�T�
dN

dx

�
� bNcTbNc

)
dx �

� ÿ2
�bÿ a� �v0�

ÿ1�r��v0�ÿT � �bÿ a�
2
�v0�ÿ1�s��v0�ÿT

�
; �10�

�r� � �r��n�1���n�1�, �s� � �s��n�1���n�1�, �10a�

rlm �
�1
ÿ1

d �xl

d �x

d �xm

d �x
d �x �

8><>:
2lm

l�mÿ 1
l�m even

0 l�m odd

�10b�

and

slm �
�1
ÿ1

�xl �xm dx �

8><>:
2

l�m� 1
l�m even

0 l�m odd

: �10c�

Also, the characteristic vector for the e-th element can be considered as

f peg � ÿ
�b
a

�v0�ÿ1f �xgx dx: �11�

Assembling Eqs. (9)±(11), one obtains

XE
e�1
�K e�ffg �

XE
e�1
fPeg: �12�

In a QEM approach, the (n + 1) interpolating points in the local coordinate system would be uniform
such that

�xi � 2iÿ n

n
; i � 0, . . . ,n: �13�
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In a SEM approach, the (n + 1) interpolating points in the local coordinate system would be

�xi � ÿcos
pi
n

i � 0,1,2, . . . ,n for a �Gaussÿ Lobatto� Chebyshev grid,

or

�x0 � ÿ1, �xn � 1, and the �Nÿ 1� roots of
dPn

d �x
� 0 for a Legendre grid, �14�

where, Pn denotes the n-th order Legendre polynomials. For the cases of uniform, Chebyshev, or
Legendre collocation points, closed-form expressions for the basis functions exist. Although the
algebraic system, derived in discretized form in Eq. (5), requires the calculation of the inverse of a full
Vandermonde matrix, as long as the order of the polynomial is not too large the adverse in¯uence is not
signi®cant. The advantage in expressing the basis functions in the form of Eq. (5) is that the formulation
can be adjusted for simplicity and any general situation can be considered. This will greatly reduce
di�culties encountered when writing the numerical discretization in a general context for various grid
spacings in multi-dimensional and fourth- or even higher-order governing equations. Also, once the
Vandermonde matrix in Eq. (7) is determined, e�ciency and formulation e�orts for di�erent grid
spacings will be the same when calculating the sti�ness matrix.

On the other hand, the derivative of the series fe
n� �x� in Eq. (4) serves as an approximation of f 0� �x �.

Since the fe
n are not explicit functions of the variable x, the derivative of fe

n� �x � simply involves the
derivatives of the basis functions. The derivative of a function at a speci®c collocation point �xi is
evaluated by applying the formula

f 0en � �xi � � d

d �x
bNcffeg � b0 1 2 �xi . . . n �xnÿ1

i c�v0�ÿTffeg: �15�

If the derivatives of all collocation points are calculated using Eq. (15), one obtains the weighting
coe�cients of the ®rst derivative in matrix form [Ax ].

d

d �x
fe
n� �x � �

266666664

0 1 2 �x0 . . . n �xnÿ1
0

0 1 2 �xi . . . n �xnÿ1
1

..

. ..
. ..

.
. . . ..

.

0 1 2 �xnÿ1 . . . n �xnÿ1
nÿ1

0 1 2 �xn . . . n �xnÿ1
n

377777775
�v0�ÿTffeg � �Ax�ffeg: �16�

The weighting coe�cients for the second and n-th order derivatives can then be computed as

d 2

d �x2
�
�

d

d �x

��
d

d �x

�
� �Ax��Ax�

and

dn

d �xn �
�

d

d �x

��
d nÿ1

d �xnÿ1

�
� �Ax��Ax� . . . �Ax�|������������{z������������}

n

: �17�

Since the steps of the above process are all linear operations, in practice, the linear operators are
combined factor-by-factor to a single matrix operator which, when multiplied into the vector of values
of the functions at the collocation points, yields the vector of derivatives, with speci®c physical meaning
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and importance, at these points. This expression is especially useful when computing the derivatives of a
®eld variable at the collocation points, such as in stress recovery, which involves the derivatives of the
displacements. The SEM and SM results in the present example are obtained using Chebyshev basis
functions, although Legendre series have been applied to a number of problems, and would perform
equally well in the present context. For details on other high accuracy numerical schemes such as DQM,
SM, and SEM, one can refer to Bellman and Casti (1971), Canuto et al. (1987), Quan and Chang (1989)
and Patera (1984). The numerical results for the QEM compared with DQM, SM, and SEM results are
plotted in Fig. 1. As expected, all these methods converge exponentially with respect to an increase in
the number of discretized points, at a rate much faster than conventional FDM and FEM, which are
relatively insensitive to the number of nodes. In Fig. 1,

emax � kfnumerical ÿ fexactk �18�

denotes the maximum absolute error at any discretized point in the computational domain.

2.2. Extension of formulation to two boundary conditions at each domain end

Similar to the one-dimensional approach described in the previous section, an extension of the
method to fourth-order governing equation systems is developed. As mentioned previously, the di�culty
in the formulation arises from the two boundary conditions at each domain end. With the given

Fig. 1. Comparison of several high-order numerical schemes for one-dimensional ODE.
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extensions, two or even more boundary conditions and di�erent collocation points can be handled
without di�culties. Details of this extension can be found in Chen et al. (1997).

A brief description is given in the following. A one-dimensional fourth-order governing equation with
®eld variable w� �x � is considered. The interpolating basis functions Nk� �x � are calculated similar to Eq.
(4). Extra conditions at the end points are added to meet the two boundary conditions at each end, such
that the corresponding basis functions for all (n + 1) collocation points are

bNc � b1 �x �x2 . . . �xn�2c�c0�ÿ1 for �xi � �x1, �x2, . . . , �xnÿ1 �19�
and

bNc �
ÿ
b1 �x �x2 . . . �xn�2c � b0 1 2 �x . . . �n� 2� �xn�1c

�
�c0�ÿ1 for �xi � �x0, �xn, �20�

where

�c0� �

26666666664

1 �x0 �x2
0 . . . �xn�1

0 �xn�2
0

0 1 2 �x0 . . . �n� 1� �xn
0 �n� 2� �xn�1

0

1 �x1 �x2
1 . . . �xn�1

1 �xn�2
1

..

. ..
. ..

. ..
. ..

. ..
.

1 �x1 �x2
n . . . �xn�1

n �xn�2
n

0 1 2 �xn . . . �n� 1� �xn
n �n� 2� �xn�1

n

37777777775
: �21�

From Eqs. (19) and (20), the variable w can be assumed as

Fig. 2. Convergence comparison of the critical load for a uniform pinned±pinned column by various methods.

W. Long Chen et al. / International Journal of Solids and Structures 37 (2000) 627±647 633



w� �x� �
Xnÿ1
i�1
�Ni1wi � �

X
i�0,n

"
Ni1wi �Ni2

�
dw

d �x

�
i

#
: �22�

Using Eq. (22), one observes that the ®rst derivatives of the ®eld variable w at the end points are
constrained. Also, similar to Eq. (16), the weighting coe�cient matrix for the ®rst derivative, which may
be applied in calculating the derivatives of the ®eld variables, is found to be:

�Ax� �

26666666664

0 1 2 �x0 . . . �n� 1� �xn
0 �n� 2� �xn�1

0

0 0 2 . . . �n� 1�n �xnÿ1
0 �n� 2��n� 1� �xn

0

0 1 2 �xi . . . �n� 1� �xn
0 �n� 2� �xn�1

1

..

. ..
. ..

. ..
. ..

. ..
.

0 1 2 �xn . . . �n� 1� �xn
n �n� 2� �xn�1

n

0 0 2 . . . �n� 1�n �xnÿ1
n �n� 2��n� 1� �xn

n

37777777775
�c0�ÿ1: �23�

To illustrate the fourth-order collocation method, here, the numerical convergence of the buckling of
a Bernoulli±Euler beam with pinned±pinned boundary conditions was investigated. The governing
equation can be expressed as

EI
d 4w

dx4
� q�x� ÿN

d 2w

dx2
, �24�

Fig. 3. Convergence of QEM approach for critical load of uniform pinned±pinned column (®xed polynomial order=6).
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where w is the transverse displacement function in the y-direction, E and I denote the modulus of
elasticity and the principal moment of inertia about the z-axis, and N is the axial load, respectively.
Applying the stated numerical techniques to this column buckling problem, convergence studies for
di�erent grid spacings are presented in Fig. 2, together with the integration approach of the QEM.

In the solution of the buckling load, one observes that approximations of excessively high order will
eventually result in an overdetermined solution and cause a numerical instability. Although this kind of
instability is problem dependent, it is inevitable for this class of methods if no special treatment is
applied to the overdetermined solution. However, if an element-type integration approach as in the
QEM is used, the order of the approximation polynomials is ®xed in each element. Therefore, one may
®nd it more numerically stable with an increase in the number of nodes. Fig. 3 shows the di�erent grid
spacings have little in¯uence on the convergence of the hybrid QEM scheme in fourth-order systems. In
real applications, element type domain decomposition techniques will provide a more ¯exible scheme
which can be used to isolate discontinuies in the computational domain or on the boundaries and
provide fast convergence.

Generally speaking, the previously mentioned methods can be classi®ed into two categories, pure
collocation approaches, such as the DQM and SM; and hybrid approaches using collocation and
integration, such as the SEM and QEM. It is well known that the choice of the collocation points and
orthogonality are crucial to the accuracy of the pure collocation approach; therefore, one can see that
the SM is more accurate than the DQM for the given problems. However, when hybrid approaches are
developed, one ®nds that their accuracy is quite insensitive to the grid spacing as opposed to the pure
collocation approaches. That is, the order of the chosen polynomial functions is more crucial to the
rapidity of convergence for the range of polynomial orders discussed in this study. In the following
section, both SEM and QEM will be implemented in solving the plane stress problem. Their accuracy
will be demonstrated and comparisons of both methods will be presented.

3. Static analysis by rectangular plane stress quadrature element

Here, the plane stress elements are assumed to be rectangular as shown in Fig. 4(a±c). The nodal
points are located at the collocation points, which will be discussed in more detail later. Each nodal
point in the element possesses two degrees of freedom, u and v, which denote the displacements in the x-
and y-directions, respectively.

The two-dimensional trial functions for the displacements, u and v, can be assumed as

Fig. 4. (a) 18 D.o.F. Lagrange biquadratic plane stress element, (b) 50 D.o.F. spectral plane stress element, (c) 50 D.o.F. quadra-

ture plane stress element.
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u� �x , �y� �
XNx

j�0

XNy

k�0
Nj� �x �Nk� �y �ujk, v� �x , �y � �

XNx

j�0

XNy

k�0
Nj� �x �Nk� �y�vjk: �25�

The superbar indicates the local element coordinate system given by

�x � 2

�x2 ÿ x1� �xÿ x1� ÿ 1, �y � 2

� y2 ÿ y1� � yÿ y1� ÿ 1 �26�

and Nj and Nk are the interpolation polynomials in the x- and y-directions, respectively. The derivations
of Nj and Nk for either Lagrange or Chebyshev polynomials are extensions from the previous one-
dimensional case.

3.1. Formulation of quadrature plane stress element

For a plane stress state, the equilibrium equations in terms of the stresses can be expressed as

@sxx
@x
� @txy

@y
� bx � 0,

@txy
@x
� @syy

@y
� by � 0, �27�

where bx and by denote body forces in the x- and y-directions, respectively.
For small deformations, the strain±displacement relations can be written in the following form:

ex � @u

@x
, ey � @v

@y
, gxy �

@u

@y
� @v

@x
: �28�

Substituting the trial functions from Eq. (25) into Eq. (28), the strain±displacement equations can be
rewritten as

8<:
ex
ey
gxy

9=; �
2666666664

@f00
@x

0
@f01
@x

0 . . .
@ fjk
@x

0

0
@f00
@y

0
@f01
@y

. . . 0
@ fjk
@y

@f00
@y

@f00
@x

@f01
@y

@f01
@x

. . .
@ fjk
@y

@ fjk
@x

3777777775

8>>>>>>>>>><>>>>>>>>>>:

u00
v00

..

.

..

.

ujk
vjk

9>>>>>>>>>>=>>>>>>>>>>;
� �A�fqg: �29�

Here, [A ] is a compound derivative operator in matrix form, and the fjk are trial functions

fjk � Nj� �x �Nk� �y �: �30�
Also, the stress±strain relations are of the form8<:

sx
sy
txy

9=; �
24 c11 c12 c13
c12 c22 c23
c13 c23 c33

358<:
ex
ey
gxy

9=; �31�

or, abbreviated,

fsg � �c�feg � �c��A�fqg: �32�
To derive the element sti�ness matrix and equations, one can use the principle of minimum potential
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energy. The strain energy is given by

U � 1

2

� � �
V

fegTfsgdV � 1

2

� � �
V

fegT�c�fegdV, �33�

where V is the volume.
Applying Castigliano's ®rst theorem gives

Fi � @U

@qi
: �34�

Di�erentiating the strain energy by performing di�erential quadrature procedures similar to those
used in the one-dimensional case with respect to each degree of freedom of the element, one can
construct the ®nal matrix as

�K �fqg � fF g, �35�

where the sti�ness matrix is

�K � �
� � �

V

�A�T�c��A�dV �36�

and {F } is the vector of external loads.

3.2. Numerical application

The plane stress problem illustrated in Fig. 5 is used to test the plane stress element. It models an
isotropic square plate with uniform thickness under a parabolically distributed stress on two opposite
sides with the other two sides traction free. The distributed stress sx acting on the boundaries is

Fig. 5. Plate under plane parabolic load.
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sx � s0

�
1ÿ 4

x2

L2

�
: �37�

The length, thickness, Young's modulus, and Poisson's ratio of the square plate are L, t, E and n,
respectively.

The problem is solved using the plane stress elements shown in Fig. 4(a±c) and various grids for the
quarter plate. Some selected numerical results for displacements and stresses at the points A, B, C, and
D shown in Fig. 5 are presented in Tables 1 and 2.

3.3. Result and discussion

An `exact' solution was obtained by using enough terms of a trigonometric and hyperbolic series
expansion (see Cowper et al. (1970)) to compare with the QEM numerical results. The displacements
and stresses at the corner points A, B, C, D are presented in Tables 1 and 2, respectively. From these
tables, one can observe that the higher order approximations result in high accuracy which is di�cult to
achieve by conventional low-order approximation, or alternatively, that they obtain good accuracy with
coarse mesh models. However, very-high-order approximation does not mean in®nite convergence, since
it not only causes numerical problems but also becomes overdetermined for simpler solution forms.
Considering ¯exibility and e�ciency for further developments, a 25 nodal point element seems to
represent an optimum. Also, di�erent from the one-dimensional problem, both QEM and SEM show
the same accuracy of the numerical results in this two-dimensional problem. Therefore, when a

Table 1

Numerical displacement results for parabolically loaded plane stress problema

vB
10Et

�1ÿn2�s0L uc
10Et

�1ÿn2�s0L vc
100Et
�1ÿn2�s0L uD

10Et
�1ÿn2�s0L

A ÿ1.522267 1.29132 1.8698 5.072967

(16,144)c (1.5 � 10ÿ3)d (1.1 � 10ÿ2) (4.8 � 10ÿ2) (1.0 � 10ÿ4)
B ÿ1.520537 1.27841 1.7951 5.072867

(1,40) (4.0 � 10ÿ4) (8.9 � 10ÿ4) (6.2 � 10ÿ3) (1.2 � 10ÿ4)
C ÿ1.520537 1.27841 1.7951 5.072867

(1,40) (4.0 � 10ÿ4) (8.9 � 10ÿ4) (6.2 � 10ÿ3) (1.2 � 10ÿ4)
D ÿ1.519920 1.27727 1.7836 5.073486

(4,144) (5.3 � 10ÿ6) (2.3 � 10ÿ6) (1.5 � 10ÿ6) (1.6 � 10ÿ6)
E ÿ1.519920 1.27727 1.7836 5.073486

(4,144) (5.3 � 10ÿ6) (2.3 � 10ÿ6) (1.5 � 10ÿ6) (1.6 � 10ÿ6)
F ÿ1.519824 1.27922 1.7590 5.073691

(4,144) (6.8 � 10ÿ5) (1.5 � 10ÿ3) (1.4 � 10ÿ2) (1.7 � 10ÿ6)
G ÿ1.519795 1.28009 1.7499 5.073368

(4,144) (8.7 � 10ÿ5) (2.2 � 10ÿ3) (1.9 � 10ÿ2) (2.1 � 10ÿ6)
Exactb ÿ1.519928 1.27727 1.7837 5.073478

a A: Sixteen Lagrange basis square quadrature elements [Fig. 4(a)], highest order of interpolation function is 4. B: One

Chebyshev basis square spectral element [Fig. 4(b)], highest order of interpolation function is 8. C: One Lagrange basis square

quadrature element [Fig. 4(c)], highest order of interpolation function is 8. D: Four Chebyshev basis square spectral elements [Fig.

4(b)], highest order of interpolation function is 8. E: Four Lagrange basis square quadrature elements [Fig. 4(c)], highest order of

interpolation function is 8. F: Four Lagrange basis quadrature elements [Fig. 4(c)], highest order of interpolation function is 8,

b/a= 3 (Fig. 6). G: Four Lagrange basis quadrature elements [Fig. 4(c)], highest order of interpolation function is 8, b/a= 7 (Fig.

6).
b Cowper et al. (1970).
c (m, n ), m= number of elements, n= degrees of freedom.
d Absolute value of relative di�erence, de®ned as: |(computationalÿexact)|/|exact|.
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transformation between the computational domain and the physical domain is needed, a moderately-
high-order element QEM will provide the more ¯exible scheme, that is, a large number of nodal points,
to attain higher accuracy. In the quadrature element method, the basis functions are more complete;
therefore, it achieves C 0 and C 1 accuracy, that is, both displacements and stresses are more accurate
than for the same degree-of-freedom FEM models.

When di�erent aspect ratio elements are implemented in the problem (see Fig. 6) the maximum and
minimum principal stresses are shown in Fig. 7(a,b), respectively. Here, detailed stress distributions for
two models, one with four elements of aspect ratio 1 and one with four elements of aspect ratios 1, 7, 1
and 1/7 are computed from Eq. (31) by calculating the compound di�erential operator and the ®eld
variables, u and v, depending on the collocation points used. It is encouraging to see that aspect ratio
has much less in¯uence on the accuracy of the present method than on low-order numerical schemes,
even if the stretching of an element is severe.

4. Static analysis by rectangular quadrature plate element

4.1. Formulation of quadrature plate element

The quadrature plate element is formulated based on the discrete Kirchho� assumptions. Then, the
governing equation for an isotropic thin plate undergoing small de¯ections is given by

Table 2

Numerical results for parabolically loaded plane stress problema

10sxA/s0 10syA/s0 10sxB/s0 10syB/s0 10sxC/s0 10syC/s0

A 8.55498 ÿ1.46901 4.19128 0.07903 ÿ0.178 ÿ0.210
(16,144)c (4.1 � 10ÿ3)d (4.2 � 10ÿ2) (2.1 � 10ÿ2) (Ð) (Ð) (Ð)

B 8.64238 ÿ1.35761 3.99255 0.00553 ÿ0.2422 ÿ0.2422
(1,40) (6.0 � 10ÿ3) (3.7 � 10ÿ2) (1.1 � 10ÿ1) (Ð) (Ð) (Ð)

C 8.64238 ÿ1.35761 3.99255 0.00553 ÿ0.2422 ÿ0.2422
(1,40) (6.0 � 10ÿ3) (3.7 � 10ÿ2) (1.1 � 10ÿ1) (Ð) (Ð) (Ð)

D 8.59319 ÿ1.40681 4.10593 0.00311 ÿ0.0470 ÿ0.0470
(4,144) (3.2 � 10ÿ4) (1.9 � 10ÿ3) (1.9 � 10ÿ4) (Ð) (Ð) (Ð)

E 8.59319 ÿ1.40681 4.10593 0.00311 ÿ0.0470 ÿ0.0470
(4,144) (3.2 � 10ÿ4) (1.9 � 10ÿ3) (1.9 � 10ÿ4) (Ð) (Ð) (Ð)

F 8.59319 ÿ1.40568 4.09233 0.0143 ÿ0.0343 ÿ0.1713
(4,144) (1.5 � 10ÿ3) (2.7 � 10ÿ3) (3.5 � 10ÿ4) (Ð) (Ð) (Ð)

G 8.61504 ÿ1.40187 4.06266 0.0207 ÿ0.0102 ÿ0.2304
(4,144) (2.9 � 10ÿ3) (5.4 � 10ÿ3) (1.1 � 10ÿ2) (Ð) (Ð) (Ð)

Exactb 8.59046 ÿ1.40954 4.10670 0 0 0

a A: Sixteen Lagrange basis square quadrature elements [Fig. 4(a)], highest order of interpolation function is 4. B: One

Chebyshev basis square spectral element [Fig. 4(b)], highest order of interpolation function is 8. C: One Lagrange basis square

quadrature element [Fig. 4(c)], highest order of interpolation function is 8. D: Four Chebyshev basis square spectral elements [Fig.

4(b)], highest order of interpolation function is 8. E: Four Lagrange basis square quadrature elements [Fig. 4(c)], highest order of

interpolation function is 8. F: Four Lagrange basis quadrature elements [Fig. 4(c)], highest order of interpolation function is 8,

b/a= 3 (Fig. 6). G: Four Lagrange basis quadrature elements [Fig. 4(c)], highest order of interpolation function is 8, b/a= 7 (Fig. 6).
b Cowper et al. (1970).
c (m, n ), m= number of elements, n= degrees of freedom.
d Absolute value of relative di�erence, de®ned as: |(computationalÿexact)|/|exact|.
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where q(x,y ) represents the distributed transverse load and D is the plate rigidity, such that D=Eh 3/
12(1ÿn 2). The quadrature plate element is closely related to the serendipity Lagrange element, but uses
basis functions of higher order. Interelement compatibilities C 0 and C 1 are met exactly at the
midsurface. A twenty-®ve-node rectangular element with 49 degrees of freedom is shown in Fig. 8 and
described in Table 3. The displacement ®eld of the 49 D.o.F. quadrature plate element is expressed in
terms of polynomial type basis functions such that the displacement of the element can be assumed as:
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Here, Nij are the shape functions which can be determined from the speci®ed collocation points. Also,
wi, � @w@ �x �i, � @w@ �y �i and � @

2w
@ �x @ �y �i are the local degrees of freedom associated with node i.

In Kirchho�'s plate theory, the bending strain of the element is given by:

Fig. 6. Element arrangement for plane stress problem.

Table 3

Degrees of freedom for 25-node quadrature plate element

Nodal no. Degrees of Freedom

1, 5, 9, 13 w, @w/@x, @w/@y, @2w/@x@y
2, 3, 4, 10, 11, 12 w, @w/@y
6, 7, 8, 14, 15, 16 w, @w/@x
17±25 w

Total D.o.F. 49
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Fig. 7. (a) Isostress curves for maximum principal stress for two di�erent grid models, (b) isostress curves for minimum principal

stress for two di�erent grid models.
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Combining Eqs. (39) and (40), one can express the strain±displacement relationship as

feg � ÿz
(
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@x2
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@y2
2
@2

@x@y

)T

bNcfwg � ÿzbQcfwg: �41�

For constant thickness h, the sti�ness matrix can be calculated as

�K � �
�
A

�Q�T�D��Q�dA, �42�

in which A is the mid-surface area of the element, and [D ] is the rigidity matrix,

�D� � Eh2

12�1ÿ n2�

2664
1 n 0
n 1 0

0 0
�1ÿ n�

2

3775: �43�

Because of the imposed compatibility conditions, the calculation of the sti�ness matrix is more
complicated and di�cult to achieve analytically than that of a second-order system. When analytical
calculation of the sti�ness matrix becomes too complicated or even impossible, full numerical
integration should be used.

The force vector can be calculated as

fF g �
�
A

F�x,y�bNcTdA: �44�

Therefore, the plate bending governing equations in matrix form can be written as

�Ks�fwg � fFsg, �45�
where the subscript s represents the whole discretized system.

Fig. 8. Nodal con®guration of quadrature plate element.
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4.2. Numerical applications

The overall sti�ness matrix and force vector in Eq. (45) are obtained by full numerical integration and
assembly procedures as used in the FEM for the solution of plate bending problems. Various loading
and boundary conditions are investigated in the following study. For the QEM, the domain
decomposition is achieved by using Galerkin techniques; therefore, interelement C 2 and C 3

compatibility conditions are not considered here.

4.3. Results and discussion

4.3.1. Comparison with conventional low-order FEM
Consider an a � a clamped square plate under an uniform loading or a concentrated load. The

coordinates used here are the same as those shown in Fig. 8. Numerical results using 49 D.o.F. QEM
and 12 D.o.F. FEM plate elements are compared in Fig. 9. As expected, the QEM demonstrates
superior performance in calculating the ®eld variable for the fourth-order system. From Fig. 9, it should
be noted that, when just a single element is used, the numerical results for the distributed load case are
much better than those for the concentrate load case, since the element continuous basis functions are
not suitable to deal with discontinuous loading conditions. However, when the discontinuity is placed
on an interelement nodal point, convergence is much faster than for the low-order FEM scheme.

Fig. 9. Convergence comparison of QEM clamped plate model under concentrated load or uniform load. �FEM (using D.O.F.

plate elements).

Table 4

De¯ection of simply supported plate under central concentrated load (w � 100D/Pa 2, even spacing, y= 0)

No. of elements D.o.F. (w )x = 0 (w )x=a/8 (w )x = 2a/8 (w )x = 3a/8

1 � 1 25 1.10961 Ð 0.717970 Ð

2 � 2 100 1.15812 1.00644 0.714091 0.366446

Exact 1.16004 1.00662 0.713923 0.366843
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4.3.2. Bending moment; errors at interfaces
For a more detailed test, an analytical solution for a simply supported square plate under a central

concentrated load or a uniform load is calculated according to Timoshenko and Woinowsky-Krieger
(1959) with up to six ®gures of accuracy. The coordinate system is the same as that in Fig. 8. Numerical
de¯ection results for a simply supported plate under a central concentrated load for even and Chebyshev
grid spacings are listed in Tables 4 and 5, respectively. High accuracy and good convergence are
obtained similar to those for the clamped boundary condition. In addition, Table 6 shows that the QEM
provides very high accuracy in calculating the bending moment which is more important in engineering
applications. The deformed surface of a simply supported plate under a central concentrated load is
shown in Fig. 10(a). The error distribution of the ®eld variable, w, for a 2 � 2 element QEM model is
shown in Fig. 10(b). The normalized error is de®ned as

�wcomputational ÿ wexact�
wc exact

, wc � �0:5, 0:5�: �46�

One can observe that the largest errors occur at the interelement interfaces, since enforcement of the
interpolant continuities are limited to C 0 and C 1. The compatibility conditions can be improved by
increasing the order of the individual elements or by re®ning the mesh as in the FEM. However, the
numerical results are very accurate compared to the analytical solutions from Timoshenko and
Woinowsky-Krieger (1959).

4.3.3. Non-rectangular computational domains
The QEM is applied to the analysis of a uniform square plate with a square central opening as shown

in Fig. 11. The external edges of the plate are simply supported, the internal edges are free, and the
plate is subjected to a uniformly distributed load. One quarter of the plate is considered and three
quadrature elements are used in this model. The numerical results are compared with those by
Tottenham (1979) using the boundary element method (BEM) and the ®nite di�erence method (FDM)
and with ®nite element (FEM) results as demonstrated in Table 7. The QEM demonstrates good
agreement with the BEM and with ®ne mesh FDM and FEM models.

4.3.4. In¯uence of singular points
The appearance of a singularity will result in slow convergence for a conventional low-order

approach. On the other hand, this type of problem can yield solutions with oscillations for high-order or
series-type numerical methods because of the use of global basis functions. Thus, if only one quadrature
element is used for the clamped plate model under a concentrated load as discussed in Section 4.3.1, the
situation is similar to other high-order numerical methods that use global basis functions over the whole
computational domain. Because of the noncontinuous loading condition, a high-order approximation
does, therefore, not show much advantage over the conventional low-order FEM approach (Fig. 9).
However, if a 2 � 2 element model is used, one can put the concentrated load at the central corner point
of the four elements. That is, if the present element method is applied properly, it can isolate such

Table 5

De¯ection of simply supported plate under central concentrated load (w � 100D/Pa 2, Chebyshev spacing, y= 0, xn=

[1ÿcos(np/4)]a/4)

No. of elements D.o.F. (w )x1 (w )x2 (w )x3 (w )x4

2 � 2 100 1.15806 1.09726 0.713828 0.215204

Exact 1.16004 1.09610 0.713923 0.216007
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discontinuities in the computational domain or on the boundary and provide rapid convergence.
Similarly, in the analysis of the uniform square plate with a square central opening, one can use a three
quadrature element model to isolate the discontinuous boundary conditions as demonstrated in Table 7.

Table 6

De¯ection and bending moment for uniformly loaded and simply supported square plate (even spacing, x = 0, y= 0)

No. of elements D.o.F. w � 1000D/qa 4 Mx � 100/qa 2

1 � 1 25 4.06218 4.78916

2 � 2 100 4.06235 4.78863

Exact 4.06235 4.78864

Fig. 10. (a) Numerical results for a square plate under point load Ð deformed surface, (b) numerical results for a square plate

under point load Ð normalized error distribution.
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5. Conclusions

The superior accuracy of quadrature elements as applied to second- and fourth-order elliptic problems
with smooth solutions in static analysis has been demonstrated through the numerical investigations in
this study. Using the techniques proposed here can result in a substantially lower computational e�ort
for given accuracy, or, alternatively, allows one to obtain solutions with smaller errors than the standard
®nite element method. It is expected that the QEM as a combination of DQM and FEM will allow for
a wider range of reliable applications than is commonly believed possible with other higher-oder or
series-type numerical schemes.
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